Coursera - Neural Networks for Machine Learning



Coursera - Neural Networks for Machine Learning
They are already at the heart of a new generation of speech recognition devices and they are beginning to outperform earlier systems for recognizing objects in images. The course will explain the new learning procedures that are responsible for these advances, including effective new proceduresr for learning multiple layers of non-linear features, and give you the skills and understanding required to apply these procedures in many other domains.
Lecture 1: Introduction
Lecture 2: The Perceptron learning procedure
Lecture 3: The backpropagation learning proccedure
Lecture 4: Learning feature vectors for words
Lecture 5: Object recognition with neural nets
Lecture 6: Optimization: How to make the learning go faster
Lecture 7: Recurrent neural networks
Lecture 8: More recurrent neural networks
Lecture 9: Ways to make neural networks generalize better
Lecture 10: Combining multiple neural networks to improve generalization
Lecture 11: Hopfield nets and Boltzmann machines
Lecture 12: Restricted Boltzmann machines (RBMs)
Lecture 13: Stacking RBMs to make Deep Belief Nets
Lecture 14: Deep neural nets with generative pre-training
Lecture 15: Modeling hierarchical structure with neural nets
Lecture 16: Recent applications of deep neural nets
Format : MPEG-4
Format profile : Base Media
Codec ID : isom
File size : 11.2 MiB
Duration : 9mn 40s
Overall bit rate : 161 Kbps
Encoded date : UTC 1970-01-01 00:00:00
Tagged date : UTC 1970-01-01 00:00:00
Writing application : Lavf53.29.100
Video #1
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format settings, CABAC : Yes
Format settings, ReFrames : 4 frames
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 9mn 40s
Bit rate mode : Variable
Bit rate : 29.2 Kbps
Width : 960 pixels
Height : 540 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 15.000 fps
Resolution : 24 bits
Colorimetry : 4:2:0
Scan type : Progressive
Bits/(Pixel*Frame) : 0.004
Stream size : 2.02 MiB (18%)
Writing library : x264 core 120 r2120 0c7dab9
Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x3:0x113 / me=hex / subme=7 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=1 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=12 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=250 / keyint_min=15 / scenecut=40 / intra_refresh=0 / rc_lookahead=40 / rc=crf / mbtree=1 / crf=28.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / ip_ratio=1.40 / aq=1:1.00
Encoded date : UTC 1970-01-01 00:00:00
Tagged date : UTC 1970-01-01 00:00:00
Audio #2
ID : 2
Format : AAC
Format/Info : Advanced Audio Codec
Format version : Version 4
Format profile : LC
Format settings, SBR : No
Codec ID : 40
Duration : 9mn 40s
Bit rate mode : Constant
Bit rate : 128 Kbps
Channel(s) : 2 channels
Channel positions : L R
Sampling rate : 44.1 KHz
Resolution : 16 bits
Stream size : 8.85 MiB (79%)
Encoded date : UTC 1970-01-01 00:00:00
Tagged date : UTC 1970-01-01 00:00:00
No mirrors please

[email protected]
Neural_Networks_for_Machine_Learning.part1.rar
Neural_Networks_for_Machine_Learning.part2.rar
Neural_Networks_for_Machine_Learning.part3.rar
Neural_Networks_for_Machine_Learning.part4.rar
Neural_Networks_for_Machine_Learning.part5.rar